Basic Neurophysiology: Difference between revisions

From Neurophyspedia, the Wikipedia of Intraoperative Neurophysiology
Jump to navigation Jump to search
Line 4: Line 4:
== Membrane Ion Channels ==
== Membrane Ion Channels ==


All animal cells are enclosed in a plasma membrane, which separates its cytoplasm with the extracellular environment. Cell membrane has the structure of a lipid bilayer, with large molecules embedded in it. Concentration of ions are different across the cell membrane, with more sodium ions (Na+) and chloride ions (Cl-) outside the cell, and more potassium ions (K+) and negative charged protein molecules (A-) inside the cell.
All animal cells are enclosed in a plasma membrane, which separates its cytoplasm with the extracellular environment. Cell membrane has the structure of a lipid bilayer, with large molecules embedded in it. Concentration of ions are different across the cell membrane, with more sodium ions (Na+) and chloride ions (Cl-) outside the cell, and more potassium ions (K+) and negative charged protein molecules (A-) inside the cell. Selective ion channels at rest allow potassium ions (K+) cross the membrane easily, creating a voltage more negative inside the cell than outside, which is called resting membrane potential. The resting membrane potential of a neuron is about -70 mV.


== Action Potential ==
== Action Potential ==

Revision as of 00:44, 26 June 2014

Neurophysiology is the study of the function of the nervous system.

Membrane Ion Channels

All animal cells are enclosed in a plasma membrane, which separates its cytoplasm with the extracellular environment. Cell membrane has the structure of a lipid bilayer, with large molecules embedded in it. Concentration of ions are different across the cell membrane, with more sodium ions (Na+) and chloride ions (Cl-) outside the cell, and more potassium ions (K+) and negative charged protein molecules (A-) inside the cell. Selective ion channels at rest allow potassium ions (K+) cross the membrane easily, creating a voltage more negative inside the cell than outside, which is called resting membrane potential. The resting membrane potential of a neuron is about -70 mV.

Action Potential

Propagated Neural Activity

Synaptic Transmission

Recording Techniques

Electrodes

Amplifiers

Filtering

Signal to Noise Ratio

Signal Averaging

Electrical Safety

References